

-DA (H-

Seite 1 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

ABSCHNITT 1: Bezeichnung des Stoffs beziehungsweise des Gemischs und des Unternehmens

1.1 Produktidentifikator

NIGRIN Caravan Toiletten-Zusatz

1.2 Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Relevante identifizierte Verwendungen des Stoffs oder Gemischs:

Sanitärreiniger

Verwendungen, von denen abgeraten wird:

Zur Zeit liegen keine Informationen hierzu vor.

1.3 Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

MTS MarkenTechnikService GmbH & Co KG

Carl-Benz -Str.2 76761 Rülzheim Deutschland

Tel.: +49 7272 9801 100 Email: info@mts-gruppe.com Web: http://www.mts-gruppe.com

(CH)

Vertreiber (Schweiz): Tegro AG Ringstrasse 3 8603 Schwerzenbach Schweiz

Tel.: ++41 44 806 88 88 Email: info@tegro.ch Web: http://www.tegro.ch

E-Mail-Adresse der sachkundigen Person: info@chemical-check.de, k.schnurbusch@chemical-check.de - bitte NICHT zur Abforderung von Sicherheitsdatenblättern benutzen.

1.4 Notrufnummer

Notfallinformationsdienste / öffentliche Beratungsstelle:

 \bigcirc

(F)

Tox Info Suisse, Freiestrasse 16, CH-8032 Zürich. Nationale 24h-Notfallnummer: 145 (aus dem Ausland: +41 44 251 51 51) **Notrufnummer der Gesellschaft:**

+1 872 5888271 (MTS)

ABSCHNITT 2: Mögliche Gefahren

-DA (H)

Seite 2 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

2.1 Einstufung des Stoffs oder Gemischs

Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP) Gefahrenklasse Gefahrenkategorie Gefahrenhinweis

Skin Irrit. 2 H315-Verursacht Hautreizungen.

Eye Dam. 1 H318-Verursacht schwere Augenschäden.

Skin Sens. 1 H317-Kann allergische Hautreaktionen verursachen. Aquatic Chronic 2 H411-Giftig für Wasserorganismen, mit langfristiger

Wirkung.

2.2 Kennzeichnungselemente

Kennzeichnung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP)

Gefahr

H315-Verursacht Hautreizungen. H318-Verursacht schwere Augenschäden. H317-Kann allergische Hautreaktionen verursachen. H411-Giftig für Wasserorganismen, mit langfristiger Wirkung.

P101-Ist ärztlicher Rat erforderlich, Verpackung oder Kennzeichnungsetikett bereithalten. P102-Darf nicht in die Hände von Kindern gelangen.

P261-Einatmen von Dampf oder Aerosol vermeiden. P273-Freisetzung in die Umwelt vermeiden. P280-Schutzhandschuhe / Augenschutz / Gesichtsschutz tragen.

P305+P351+P338-BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen. P310-Sofort GIFTINFORMATIONSZENTRUM / Arzt anrufen. P501-Inhalt / Behälter einer zugelassenen Entsorgungseinrichtung zuführen.

Linalylacetat

1-(1,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-on

Dipenten

Linalool

Alkohole, C12-15, ethoxyliert

1-(2,6,6-Trimethyl-3-cyclohexen-1-yl)-2-buten-1-on

1,2-Benzisothiazol-3(2H)-on

2.3 Sonstige Gefahren

Das Gemisch enthält keinen vPvB-Stoff (vPvB = very persistent, very bioaccumulative) bzw. fällt nicht unter den Anhang XIII der Verordnung (EG) 1907/2006 (< 0,1 %).

Das Gemisch enthält keinen PBT-Stoff (PBT = persistent, bioaccumulative, toxic) bzw. fällt nicht unter den Anhang XIII der Verordnung (EG) 1907/2006 (< 0,1 %).

Das Gemisch enthält keinen Stoff mit endokrinschädlichen Eigenschaften (< 0,1 %).

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.1 Stoffe

n.a.

(D) (A) (B)-

Seite 3 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

3.2 Gemische

Calciumnitrat-Tetrahydrat	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	233-332-1
CAS	13477-34-4
% Bereich	10-<25
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Ox. Sol. 2, H272
Faktoren	Skin Irrit. 2, H315
	Eye Irrit. 2, H319

Alkohole, C12-15, ethoxyliert	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	
CAS	68131-39-5
% Bereich	10-<25
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Acute Tox. 4, H302
Faktoren	Eye Dam. 1, H318
	Aquatic Chronic 3, H412

1-(1,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-	
on	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	259-174-3
CAS	54464-57-2
% Bereich	1-<5
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Skin Irrit. 2, H315
Faktoren	Skin Sens. 1, H317
	Aquatic Chronic 1, H410 (M=1)

Dipenten	
Registrierungsnr. (REACH)	
Index	601-029-00-7
EINECS, ELINCS, NLP, REACH-IT List-No.	205-341-0
CAS	138-86-3
% Bereich	0,1-<1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Flam. Liq. 3, H226
Faktoren	Skin Irrit. 2, H315
	Skin Sens. 1, H317
	Asp. Tox. 1, H304
	Aquatic Acute 1, H400 (M=1)
	Aquatic Chronic 1, H410 (M=1)

Linalylacetat	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	204-116-4
CAS	115-95-7
% Bereich	0,1-<1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Skin Irrit. 2, H315
Faktoren	Eye Irrit. 2, H319
	Skin Sens. 1B, H317

Linalool	
Registrierungsnr. (REACH)	
Index	603-235-00-2
EINECS, ELINCS, NLP, REACH-IT List-No.	201-134-4
CAS	78-70-6

Seite 4 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

% Bereich	0,1-<1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Skin Irrit. 2, H315
Faktoren	Eye Irrit. 2, H319
	Skin Sens. 1B, H317

[3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]-2,3,4,7,8,8a-Hexahydro-	
3,6,8,8-tetramethyl-1H-3a,7-methanoazulen	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	207-418-4
CAS	469-61-4
% Bereich	0,01-<0,1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Asp. Tox. 1, H304
Faktoren	Aquatic Acute 1, H400 (M=10)
	Aquatic Chronic 1, H410 (M=10)

1-(2,6,6-Trimethyl-3-cyclohexen-1-yl)-2-buten-1-on	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	260-709-8
CAS	57378-68-4
% Bereich	0,01-<0,1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Acute Tox. 4, H302
Faktoren	Skin Irrit. 2, H315
	Skin Sens. 1A, H317
	Aquatic Acute 1, H400 (M=1)
	Aquatic Chronic 1, H410 (M=1)

[3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]-Octahydro-3,8,8-trimethyl-	
6-methylen-1H-3a,7-methanoazulen	
Registrierungsnr. (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	208-898-8
CAS	546-28-1
% Bereich	0,001-<0,1
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Skin Irrit. 2, H315
Faktoren	Eye Irrit. 2, H319
	Aquatic Acute 1, H400 (M=10)
	Aquatic Chronic 1, H410 (M=10)

1,2-Benzisothiazol-3(2H)-on	
Registrierungsnr. (REACH)	
Index	613-088-00-6
EINECS, ELINCS, NLP, REACH-IT List-No.	220-120-9
CAS	2634-33-5
% Bereich	0,005-<0,05
Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	Acute Tox. 4, H302
Faktoren	Skin Irrit. 2, H315
	Eye Dam. 1, H318
	Skin Sens. 1, H317
	Aquatic Acute 1, H400 (M=1)
	Aquatic Chronic 2, H411
Spezifische Konzentrationsgrenzen und ATE	Skin Sens. 1, H317: >=0,05 %

Pyridin-2-thiol-1-oxid, Natriumsalz		
Registrierungsnr. (REACH)		
Index	613-344-00-7	
EINECS, ELINCS, NLP, REACH-IT List-No.	223-296-5	
CAS	3811-73-2	
% Bereich	0,001-<0,01	

-DA (H-

Seite 5 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Einstufung gemäß der Verordnung (EG) Nr. 1272/2008 (CLP), M-	EUH070
Faktoren	Acute Tox. 3, H311
	Acute Tox. 3, H331
	Acute Tox. 4, H302
	Skin Irrit. 2, H315
	Eye Irrit. 2, H319
	Skin Sens. 1, H317
	STOT RE 1, H372 (Nervensystem)
	Aquatic Acute 1, H400 (M=100)
	Aquatic Chronic 2, H411
Spezifische Konzentrationsgrenzen und ATE	ATE (oral): 500 mg/kg
	ATE (dermal): 790 mg/kg
	ATE (inhalativ, Stäube oder Nebel): 0,5 mg/l

Text der H-Sätze und Einstufungs-Kürzel (GHS/CLP) siehe Abschnitt 16.

Die in diesem Abschnitt genannten Stoffe sind mit ihrer tatsächlichen, zutreffenden Einstufung genannt!

Das bedeutet bei Stoffen, welche in Anhang VI Tabelle 3.1 der Verordnung (EG) Nr. 1272/2008 (CLP-Verordnung) gelistet sind, wurden alle evtl. dort genannten Anmerkungen für die hier genannte Einstufung berücksichtigt.

Die Addition hier aufgeführter höchster Konzentrationen kann eine Klassifizierung ergeben. Nur wenn diese Klassifizierung in Abschnitt 2 aufgeführt ist, trifft sie zu. In allen anderen Fällen liegt die Gesamtkonzentration unterhalb der Einstufung.

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1 Beschreibung der Erste-Hilfe-Maßnahmen

Ersthelfer auf Selbstschutz achten!

Nie einer ohnmächtigen Person etwas durch den Mund einflößen!

Einatmen

Person Frischluft zuführen und je nach Symptomatik Arzt konsultieren.

Hautkontakt

Mit viel Wasser und Seife gründlich waschen, verunreinigte, getränkte Kleidungsstücke unverzüglich entfernen, bei Hautreizung (Rötung etc.), Arzt konsultieren.

Augenkontakt

Kontaktlinsen entfernen.

Mit viel Wasser mehrere Min. gründlich spülen, sofort Arzt rufen, Datenblatt bereithalten.

Unverletztes Auge schützen.

Augenärztliche Nachkontrolle.

Verschlucken

Mund gründlich mit Wasser spülen.

Kein Erbrechen herbeiführen, viel Wasser zu trinken geben, sofort Arzt aufsuchen.

4.2 Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Falls zutreffend sind verzögert auftretende Symptome und Wirkungen in Abschnitt 11. zu finden bzw. bei den Aufnahmewegen unter Abschnitt 4.1.

In bestimmten Fällen kann es vorkommen, dass die Vergiftungssymptome erst nach längerer Zeit/nach mehreren Stunden auftreten.

Augen, gerötet

Tränen der Augen

Bindehautentzündungen

Hautrötung

Dermatitis (Hautentzündung)

Allergische Reaktion

4.3 Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Symptomatische Behandlung.

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1 Löschmittel

Geeignete Löschmittel

Wassersprühstrahl/Schaum/CO2/Trockenlöschmittel

Ungeeignete Löschmittel

-DA (H)

Seite 6 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Keine bekannt

5.2 Besondere vom Stoff oder Gemisch ausgehende Gefahren

Im Brandfall können sich bilden:

Kohlenoxide Stickoxide Giftige Gase

5.3 Hinweise für die Brandbekämpfung

Persönliche Schutzausrüstung siehe Abschnitt 8.

Explosions- und Brandgase nicht einatmen.

Umluftunabhängiges Atemschutzgerät.

Je nach Brandgröße

Ggf. Vollschutz.

Kontaminiertes Löschwasser entsprechend den behördlichen Vorschriften entsorgen.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1 Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

6.1.1 Nicht für Notfälle geschultes Personal

Bei Verschütten oder unbeabsichtigter Freisetzung, zur Verhinderung der Kontamination, persönliche Schutzausrüstung aus Abschnitt 8 tragen.

Ausreichende Belüftung sicherstellen, Zündquellen entfernen.

Bei festen bzw. pulverförmigen Produkten eine Staubentwicklung vermeiden.

Möglichst die Gefahrenzone verlassen, ggf. vorhandene Notfallpläne anwenden.

Ungeschützte Personen fernhalten.

Für ausreichende Belüftung sorgen.

Augen- und Hautkontakt vermeiden.

Ggf. Rutschgefahr beachten.

6.1.2 Einsatzkräfte

Geeignete Schutzausrüstung sowie Materialangaben siehe Abschnitt 8.

6.2 Umweltschutzmaßnahmen

Bei Entweichung größerer Mengen eindämmen.

Undichtigkeit beseitigen, wenn gefahrlos möglich.

Eindringen in das Oberflächen- sowie Grundwasser als auch in den Boden vermeiden.

Nicht in die Kanalisation gelangen lassen.

Bei unfallbedingtem Einleiten in die Kanalisation, zuständige Behörden informieren.

6.3 Methoden und Material für Rückhaltung und Reinigung

Mit flüssigkeitsbindendem Material (z.B. Universalbindemittel, Sand, Kieselgur, Sägemehl) aufnehmen und gem. Abschnitt 13 entsorgen.

Aufgenommenes Gut in verschließbaren Behälter füllen.

6.4 Verweis auf andere Abschnitte

Siehe Abschnitt 13. sowie persönliche Schutzausrüstung siehe Abschnitt 8.

ABSCHNITT 7: Handhabung und Lagerung

Zusätzlich zu den in diesem Abschnitt enthaltenen Angaben finden sich auch in Abschnitt 8 und 6.1 relevante Angaben.

7.1 Schutzmaßnahmen zur sicheren Handhabung

7.1.1 Allgemeine Empfehlungen

Für gute Raumlüftung sorgen.

Augen- und Hautkontakt vermeiden.

Essen, Trinken, Rauchen sowie Aufbewahren von Lebensmitteln im Arbeitsraum verboten.

Hinweise auf dem Etikett sowie Gebrauchsanweisung beachten.

Arbeitsverfahren gemäß Betriebsanweisung anwenden.

7.1.2 Hinweise zu allgemeinen Hygienemaßnahmen am Arbeitsplatz

Die allgemeinen Hygienemaßnahmen im Umgang mit Chemikalien sind anzuwenden.

Vor den Pausen und bei Arbeitsende Hände waschen.

Von Nahrungsmitteln, Getränken und Futtermitteln fernhalten.

Vor dem Betreten von Bereichen, in denen gegessen wird, kontaminierte Kleidung und Schutzausrüstungen ablegen.

D A (H)

Seite 7 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

7.2 Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

Für Unbefugte unzugänglich aufbewahren.

Produkt nur in Originalverpackungen und geschlossen lagern. Produkt nicht in Durchgängen und Treppenaufgängen lagern.

Eindringen in den Boden sicher verhindern.

Bei Raumtemperatur lagern.

Lagerklasse siehe Abschnitt 15. 7.3 Spezifische Endanwendungen

Zur Zeit liegen keine Informationen hierzu vor.

Handlungsanleitung zur guten Arbeitspraxis, sowie Empfehlungen für die Gefährdungsermittlung, beachten. Gefahrstoffinformationssysteme, z.B. der Berufsgenossenschaften, der chemischen Industrie oder verschiedene Branchen, je nach Anwendung, heranziehen (Baustoffe, Holz, Chemie, Labor, Leder, Metall).

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1 Zu überwachende Parameter

Dipent Dipent	on .	
AGW: 5 ppm (28 mg/m3) (D-Limonen)	SpbÜf.: 4(II) (D-Limonen)	
Überwachungsmethoden:	- Draeger - Hydrocarbons 0,1%/c (81 03 571)	
Oborwachangementeden.	- Draeger - Hydrocarbons 2/a (81 03 581)	
BGW:		gaben: DFG, H, Sh, Y (D-
2011.	Limonen)	gason. <i>Bi</i> 3, 11, 311, 1 (2
Chem. Bezeichnung Dipent		
MAK / VME: 7 ppm (40 mg/m3)	KZGW / VLE: 14 ppm (80 mg/m3)	
Überwachungsmethoden / Les procédure		
de suivi / Le procedure di monitoraggio:	 Draeger - Hydrocarbons 0,1%/c (81 03 571) 	
	 Draeger - Hydrocarbons 2/a (81 03 581) 	
BAT / VBT:	Sonstiges /	Divers: S, SS-C
D Chem. Bezeichnung Pyridin	n-2-thiol-1-oxid, Natriumsalz	
AGW: 0,2 mg/m3 E	SpbÜf.: 2(II)	
Überwachungsmethoden:		
BGW:	Sonstige An	gaben: DFG, H, Y
		gason. Bro, ri, r
	n-2-thiol-1-oxid, Natriumsalz	
MAK-Tmw / TRK-Tmw: 1 mg/m3	MAK-Kzw / TRK-Kzw: 4 mg/m3 (4 x 15mi	n. MAK-Mow:
	(Miw))	
Überwachungsmethoden:		
BGW:	Sonstige An	gaben: H
© Chem. Bezeichnung Pyridin	n-2-thiol-1-oxid, Natriumsalz	
MAK / VME: 0,2 mg/m3 e	KZGW / VLE: 0,4 mg/m3 e	
Überwachungsmethoden / Les procédure	S	
de suivi / Le procedure di monitoraggio:		
BAT / VBT:	Sonstiges /	Divers: H, SS-C
Cham Paraighning Chicar		
Chem. Bezeichnung Glycer AGW: 200 mg/m3 E	SpbÜf.: 2(I)	
Überwachungsmethoden:	SpbUi 2(I)	
BGW:		gaben: DFG, Y
	Sonstige An	gaben. DFG, f
Chem. Bezeichnung Glycer		
MAK / VME: 50 mg/m3 e	KZGW / VLE: 100 mg/m3 e	
Überwachungsmethoden / Les procédure	S	
de suivi / Le procedure di monitoraggio:		
BAT / VBT:	Sonstiges /	Divers: SS-C
D Chem. Bezeichnung Oxydip	propanol	
AGW: 100 mg/m3 E	SpbÜf.: 2(II)	
Überwachungsmethoden:		

Seite 8 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

BGW:		Sonstige And	gaben: DFG, Y, 11
Chem. Bezeichnung Oxydipropanol			
MAK / VME: 140 mg/m3 e	KZGW / VLE:	280 mg/m3 e	
Überwachungsmethoden / Les procédures		-	·
de suivi / Le procedure di monitoraggio:			
BAT / VBT:		Sonstiges / D	Divers: SS-C

Calciumnitrat-Tetrahydrat Anwardungsgebiet Expecitionsweg / Auswirkung auf die Deskripte Wort Einheit Bemerku											
Anwendungsgebiet	Expositionsweg / Umweltkompartiment	Auswirkung auf die Gesundheit	Deskripto r	Wert	Einheit	Bemerku ng					
	Umwelt - sporadische (intermittierende) Freisetzung		PNEC	4,5	mg/l						
	Umwelt - Meerwasser		PNEC	0,045	mg/l						
	Umwelt - Süßwasser		PNEC	0,45	mg/l						
	Umwelt - Abwasserbehandlungsanla ge		PNEC	18	mg/l						
Verbraucher	Mensch - dermal	Langzeit, systemische Effekte	DNEL	8,33	mg/kg bw/day						
Verbraucher Mensch - Inhalation Verbraucher Mensch - oral Arbeiter / Arbeitnehmer Mensch - dermal		Langzeit, systemische Effekte	DNEL	6,3	mg/m3						
		Langzeit, systemische Effekte	DNEL	8,33	mg/kg bw/day						
		Langzeit, systemische Effekte	DNEL	13,9	mg/kg bw/day						
Arbeiter / Arbeitnehmer	Mensch - Inhalation	Langzeit, systemische Effekte	DNEL	24,5	mg/m3						

Anwendungsgebiet	Expositionsweg / Umweltkompartiment	Auswirkung auf die Gesundheit	Deskripto r	Wert	Einheit	Bemerku ng
	Umwelt - Wasser		PNEC	0,011	mg/l	
	Umwelt - Meerwasser		PNEC	0,0011	mg/l	
	Umwelt - Sediment,		PNEC	0,0609	mg/kg	
	Meerwasser					
	Umwelt - Boden		PNEC	0,115	mg/kg	
	Umwelt - Abwasserbehandlungsanla ge		PNEC	10	mg/l	
	Umwelt - periodische Freisetzung		PNEC	0,11	mg/l	
	Umwelt - Sediment, Süßwasser		PNEC	0,609	mg/kg	
	Mensch - dermal	Langzeit, systemische Effekte	DNEL	2,5	mg/kg bw/day	
Verbraucher	Mensch - Inhalation	Langzeit, systemische Effekte	DNEL	0,68	mg/m3	
Verbraucher	Mensch - dermal	Langzeit, systemische Effekte	DNEL	1,25	mg/kg	
Verbraucher	Mensch - dermal	Kurzzeit, lokale Effekte	DNEL	0,24	mg/m3	
Verbraucher Mensch - dermal		Langzeit, lokale Effekte	DNEL	0,24	mg/cm2	
Verbraucher	Mensch - oral	Langzeit, systemische Effekte	DNEL	0,2	mg/kg bw/day	
Arbeiter / Arbeitnehmer	Mensch - dermal	Langzeit, lokale Effekte	DNEL	0,24	mg/cm2	

Seite 9 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

Arbeiter / Arbeitnehmer	Mensch - Inhalation	Langzeit, systemische Effekte	DNEL	2,75	mg/m3	
Arbeiter / Arbeitnehmer	Mensch - dermal	Langzeit, systemische Effekte	DNEL	2,5	mg/kg body weight/day	
Arbeiter / Arbeitnehmer	Mensch - dermal	Kurzzeit, lokale Effekte	DNEL	0,24	mg/cm2	

Linalool Anwendungsgebiet	Expositionsweg / Umweltkompartiment	Auswirkung auf die Gesundheit	Deskripto r	Wert	Einheit	Bemerku ng
	Umwelt - Süßwasser	Oesunanen	PNEC	0,2	mg/l	lig
	Umwelt - Meerwasser		PNEC	0,02	mg/l	
	Umwelt - Wasser, sporadische (intermittierende) Freisetzung		PNEC	2	mg/l	
	Umwelt - Abwasserbehandlungsanla ge		PNEC	10	mg/l	
	Umwelt - Sediment, Süßwasser		PNEC	2,22	mg/kg	
	Umwelt - Sediment, Meerwasser		PNEC	0,222	mg/kg	
	Umwelt - Boden		PNEC	0,3	mg/kg	
Verbraucher	Mensch - dermal	Kurzzeit, lokale Effekte	DNEL	15	mg/cm2	
Verbraucher	Mensch - dermal	Langzeit, systemische Effekte	DNEL	1,25	mg/kg bw/d	
Verbraucher Mensch - Inhalation		Langzeit, systemische Effekte	DNEL	0,7	mg/m3	
Verbraucher	Mensch - oral	Langzeit, systemische Effekte	DNEL	0,2	mg/kg bw/d	
Verbraucher	Mensch - dermal	Kurzzeit, systemische Effekte	DNEL	2,5	mg/kg bw/d	
Verbraucher	Mensch - Inhalation	Kurzzeit, systemische Effekte	DNEL	4,1	mg/m3	
Verbraucher	Mensch - oral	Kurzzeit, systemische Effekte	DNEL	1,2	mg/kg bw/d	
Verbraucher	Mensch - dermal	Langzeit, lokale Effekte	DNEL	15	mg/kg bw/d	
Verbraucher	Mensch - dermal	Kurzzeit, systemische Effekte	DNEL	15	mg/kg bw/d	
Arbeiter / Arbeitnehmer	Mensch - dermal	Langzeit, systemische Effekte	DNEL	2,5	mg/kg bw/d	
Arbeiter / Arbeitnehmer	Mensch - Inhalation	Langzeit, systemische Effekte	DNEL	2,8	mg/m3	
Arbeiter / Arbeitnehmer	Mensch - dermal	Kurzzeit, systemische Effekte	DNEL	5	mg/kg bw/d	
Arbeiter / Arbeitnehmer	Mensch - Inhalation	Kurzzeit, systemische Effekte	DNEL	16,5	mg/m3	
Arbeiter / Arbeitnehmer	Mensch - dermal	Langzeit, lokale Effekte	DNEL	15	mg/kg bw/d	
Arbeiter / Arbeitnehmer	Mensch - dermal	Kurzzeit, lokale Effekte	DNEL	15	mg/kg bw/d	

Glycerin									
Anwendungsgebiet	Expositionsweg /	Auswirkung auf die	Deskripto	Wert	Einheit	Bemerku			
	Umweltkompartiment	Gesundheit	r			ng			
	Umwelt - Süßwasser		PNEC	0,885	mg/l				

-DA (H)

Seite 10 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

	1				
	Umwelt - Meerwasser		PNEC	0,088	mg/l
	Umwelt -		PNEC	1000	mg/l
	Abwasserbehandlungsanla				
	ge				
	Umwelt - Sediment,		PNEC	3,3	mg/kg dw
	Süßwasser				
	Umwelt - Sediment,		PNEC	0,33	mg/kg dw
	Meerwasser				
	Umwelt - Boden		PNEC	0,141	mg/kg dw
	Umwelt - Wasser,		PNEC	8,85	mg/l
	sporadische				
	(intermittierende)				
	Freisetzung				
Verbraucher	Mensch - Inhalation	Langzeit, lokale	DNEL	33	mg/m3
		Effekte			
Verbraucher	Mensch - oral	Langzeit,	DNEL	229	mg/kg
		systemische Effekte			bw/day
Arbeiter / Arbeitnehmer	Mensch - Inhalation	Langzeit, lokale	DNEL	56	mg/m3
		Effekte			

Oxydipropanol Anwendungsgebiet	Expositionsweg /	Auswirkung auf die	Deskripto	Wert	Einheit	Bemerku
J. J	Umweltkompartiment	Gesundheit	r			ng
	Umwelt - Süßwasser		PNEC	0,1	mg/l	
	Umwelt - Meerwasser		PNEC	0,01	mg/l	
	Umwelt - sporadische (intermittierende) Freisetzung		PNEC	1	mg/l	
	Umwelt - Abwasserbehandlungsanla ge		PNEC	1000	mg/l	
	Umwelt - Sediment, Süßwasser		PNEC	0,238	mg/kg	
	Umwelt - Sediment, Meerwasser		PNEC	0,0238	mg/kg	
	Umwelt - Boden		PNEC	0,0253	mg/kg	
	Umwelt - oral (Futter)		PNEC	313	mg/kg	
Verbraucher	Mensch - dermal	Langzeit, systemische Effekte	DNEL	51	mg/kg	
Verbraucher Mensch - Inhalation Verbraucher Mensch - oral		Langzeit, systemische Effekte	DNEL	70	mg/m3	
		Langzeit, systemische Effekte	DNEL	24	mg/kg	
Arbeiter / Arbeitnehmer	Mensch - dermal	Langzeit, systemische Effekte	DNEL	84	mg/kg	
Arbeiter / Arbeitnehmer	Mensch - Inhalation	Langzeit, systemische Effekte	DNEL	238	mg/m3	

 ⁻ Deutschland | AGW = Arbeitsplatzgrenzwerte (Technische Regeln für Gefahrstoffe Nr. 900 - TRGS 900): E = Einatembare Fraktion, A = Alveolengängige Fraktion.

⁽EU) = Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU. (8) = Einatembare Fraktion (2004/37/EG, 2017/164/EU). (9) = Alveolengängige Fraktion (2004/37/EG, 2017/164/EU). (11) = Einatembare Fraktion (2004/37/EG). (12) = Einatembare Fraktion. Alveolengängige Fraktion in den Mitgliedstaaten, die am Tag des Inkrafttretens dieser Richtlinie ein Biomonitoringsystem mit einem biologischen Grenzwert von maximal 0,002 mg Cd/g Creatinin im Urin umsetzen (2004/37/EG).

^{** =} Der Grenzwert für diesen Stoff wurde durch die TRGS 900 (Deutschland) vom Januar 2006 aufgehoben mit dem Ziel der Überarbeitung. I

[|] Spb.-Üf. = Spitzenbegrenzung - Überschreitungsfaktor (1 bis 8) und Kategorie (I, II) für Kurzzeitwerte (Technische Regeln für Gefahrstoffe Nr. 900 - TRGS 900): "= =" = Momentanwert. Kategorie (I) = Stoffe bei denen die lokale Wirkung grenzwertbestimmend ist oder atemwegssensibilisierende Stoffe, (II) = Resorptiv wirksame Stoffe.

⁽EU) = Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU.

-DA (H-

Seite 11 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

- (8) = Einatembare Fraktion (2004/37/EG, 2017/164/EU). (9) = Alveolengängige Fraktion (2004/37/EG, 2017/164/EU). (10) = Grenzwert für die Kurzzeitexposition für einen Bezugszeitraum von einer Minute (2017/164/EU).
- ** = Der Grenzwert für diesen Stoff wurde durch die TRGS 900 (Deutschland) vom Januar 2006 aufgehoben mit dem Ziel der Überarbeitung. |
- | BGW = Biologische Grenzwerte (Technische Regeln für Gefahrstoffe Nr. 903 TRGS 903): Untersuchungsmaterial: B = Vollblut, BE = Erythrozytenfraktion des Vollblutes, P/S = Plasma/Serum, U = Urin.
- Probennahmezeitpunkt: a) keine Beschränkung, b) Expositionsende, bzw. Schichtende, c) bei Langzeitexposition: am Schichtende nach mehreren vorangegangenen Schichten, d) vor nachfolgender Schicht, e) nach Expositionsende: Stunden, f) nach mindestens 3 Monaten Exposition, g) unmittelbar nach Exposition, h) vor der letzten Schicht einer Arbeitswoche.
- (EU) = Richtlinie 98/24/EG oder 2004/37/EG oder SCOEL (Biological Limit Value BLV, Recommendation from the Scientific Committee on Occupational Exposure Limits (SCOEL)) \mid
- | Sonstige Angaben (Technische Regeln für Gefahrstoffe Nr. 900 TRGS 900): H = hautresorptiv. X = krebserzeugender Stoff der Kat. 1A oder 1B oder krebserzeugende Tätigkeit oder Verfahren nach § 2 Absatz 3 Nr. 4 der Gefahrstoffverordnung es ist zusätzlich § 10 GefStoffV zu beachten. Y = Ein Risiko der Fruchtschädigung braucht bei Einhaltung von AGW u. BGW nicht befürchtet zu werden. Z = Ein Risiko der Fruchtschädigung kann auch bei Einhaltung des AGW und des BGW nicht ausgeschlossen werden (s. Nr 2.7 TRGS 900). Sa = Atemwegssensibilisierend. Sh = Hautsensibilisierend. Sah = Atemwegs- und hautsensibilisierend. DFG = Deutsche Forschungsgemeinschaft (MAK-Kommission). AGS = Ausschuss für Gefahrstoffe. (10) = Der Arbeitsplatzgrenzwert bezieht sich auf den Elementgehalt des entsprechenden Metalls. (11) = Summe aus Dampf und Aerosolen. (TRGS 905) = Verzeichnis krebserzeugender, keimzellmutagener oder reproduktionstoxischer Stoffe (Technische Regeln für Gefahrstoffe Nr. 905): Im Anhang VI Teil 3 der CLP-VO nicht genannte oder vom AGS davon abweichend eingestufte Stoffe mit K = Krebserzeugend, M = Keimzellmutagen, RF = Reproduktionstoxisch Fruchtbarkeitsgefährdend (kann Fruchtbarkeit beeinträchtigen), RE = Reproduktionstoxisch Entwicklungsschädigend (Kann das Kind im Mutterleib schädigen), 1A/1B/2 = Kategorien nach Anhang I der CLP-Verordnung.
- (TRGS 907) = Verzeichnis sensibilisierender Stoffe und von Tätigkeiten mit sensibilisierenden Stoffen (Technische Regeln für Gefahrstoffe Nr. 907): Sa = Atemwegssensibilisierend. Sh = Hautsensibilisierend. Sah = Atemwegs- und hautsensibilisierend. (EU) = Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU. (13) = Der Stoff kann zu einer Sensibilisierung der Haut und der Atemwege führen (Richtlinie 2004/37/EG), (14) = Der Stoff kann zu einer Sensibilisierung der Haut führen (Richtlinie 2004/37/EG).
- ** = Der Grenzwert für diesen Stoff wurde durch die TRGS 900 (Deutschland) vom Januar 2006 aufgehoben mit dem Ziel der Überarbeitung. |
- Österreich | MAK-Tmw / TRK-Tmw = Maximale Arbeitsplatzkonzentration Tagesmittelwert / Technische Richtkonzentration Tagesmittelwert (Grenzwerteverordnung GKV): A = alveolengängige Fraktion, E = einatembare Fraktion.
- $(EU) = Richtlinie \ 91/322/EWG, \ 98/24/EG, \ 2000/39/EG, \ 2004/37/EG, \ 2006/15/EG, \ 2009/161/EU, \ 2017/164/EU \ oder \ 2019/1831/EU. \\ (8) = Einatembare \ Fraktion \ (2004/37/EG, \ 2017/164/EU). \ (9) = Alveolengängige \ Fraktion \ (2004/37/EG, \ 2017/164/EU). \ (11) = Richtlinie \ 91/322/EWG, \ 98/24/EG, \ 2000/39/EG, \ 2000/39$
- Einatembare Fraktion (2004/37/EG). (12) = Einatembare Fraktion. Alveolengängige Fraktion in den Mitgliedstaaten, die am Tag des Inkrafttretens dieser Richtlinie ein Biomonitoringsystem mit einem biologischen Grenzwert von maximal 0,002 mg Cd/g Creatinin im Urin umsetzen (2004/37/EG). I
- | MAK-Kzw / TRK-Kzw = Maximale Arbeitsplatzkonzentration Kurzzeitwert / Technische Richtkonzentration Kurzzeitwert (Grenzwerteverordnung GKV): A = alveolengängige Fraktion, E = einatembare Fraktion, Miw = als Mittelwert über den Beurteilungzeitraum.
- $(EU) = \bar{Richtlinie} \ 91/322/EWG, \ 98/24/EG, \ 2000/39/EG, \ 2004/37/EG, \ 2006/15/EG, \ 2009/161/EU, \ 2017/164/EU \ oder \ 2019/1831/EU.$
- (8) = Einatembare Fraktion (2004/37/EG, 2017/164/EU). (9) = Alveolengängige Fraktion (2004/37/EG, 2017/164/EU). (10) = Grenzwert für die Kurzzeitexposition für einen Bezugszeitraum von einer Minute (2017/164/EU).
- | MAK-Mow = Maximale Arbeitsplatzkonzentration Momentanwert (Grenzwerteverordnung GKV) |
- BGW = Biologischer Grenzwert. VGÜ = Verordnung der Bundesministerin für Arbeit, Familie und Jugend über die Gesundheitsüberwachung am Arbeitsplatz.
- (EU) = Richtlinie 98/24/EG oder 2004/37/EG oder SCOEL (Biological Limit Value BLV, Recommendation from the Scientific Committee on Occupational Exposure Limits (SCOEL)) |
- | Sonstige Angaben (Grenzwerteverordnung GKV): H = besondere Gefahr der Hautresorption, S = Arbeitsstoff löst in weit überdurchschnittlichem Maß allerg. Reaktionen aus, Sa/Sh/Sah = Gefahr d. Sensibilisierung d. Atemwege/d. Haut/d. Atemw.+Haut, SP = Gefahr d. Photosensibilisierung, A1/A2 = Eindeutig als krebserzeugend ausgewiesene Arbeitsstoffe, B = Stoffe mit begründetem Verdacht auf krebserzeugendes Potential, C = Krebserzeugende Stoffgruppen und Stoffgemische, F = Kann die Fruchtbarkeit beeinträchtigen, f = Kann vermutlich die Fruchtbarkeit beeinträchtigen, D = Kann das Kind im Mutterleib schädigen, d =
- Kann vermutlich das Kind im Mutterleib schädigen, L = Kann Säuglinge über die Muttermilch schädigen. (EU) = Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU. (13) = Der Stoff kann zu einer Sensibilisierung der Haut und der Atemwege führen (Richtlinie 2004/37/EG), (14) = Der Stoff kann zu einer Sensibilisierung der Haut führen (Richtlinie 2004/37/EG).
- Schweiz/Suisse/Svizzera | MAK / VME = DE: Maximaler Arbeitsplatzkonzentrationswert 8 h (MAK-Wert) (Grenzwerte am Arbeitsplatz, Schweizerische Unfallversicherungsanstalt (SUVA)) / FR: Valeurs (limites) moyennes d'exposition (VME) 8 h (Valeurs limites d'exposition aux postes de travail, Caisse nationale suisse d'assurance en cas d'accidents (SUVA)):

- (ID) (A) (II)-

Seite 12 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

DE: e = einatembarer Staub, a = alveolengängiger Staub. FR: e = poussières inhalables, a = poussières alvéolaires. (EU/UE) = DE: Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU / FR: Directive 91/322/CEE, 98/24/CE, 2000/39/CE, 2004/37/CE, 2006/15/CE, 2009/161/UE, 2017/164/UE ou 2019/1831/UE. |

| KZGW / VLE = DE: Kurzzeitgrenzwert - 15 min (Grenzwerte am Arbeitsplatz, Schweizerische Unfallversicherungsanstalt (SUVA)) / FR: Valeur limite d'exposition calculée sur une courte durée - 15 min (Valeurs limites d'exposition aux postes de travail, Caisse nationale suisse d'assurance en cas d'accidents (SUVA)):

DE: e = einatembarer Staub, a = alveolengängiger Staub, # = KZGW darf im Mittel auch während 15 Minuten nicht überschritten werden.

FR: e = poussières inhalables, a = poussières alvéolaires, # = La VLE ne doit pas être dépassée en moyenne même pendant 15 minutes.

(EU/UE) = DE: Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU / FR: Directive 91/322/CEE, 98/24/CE, 2000/39/CE, 2004/37/CE, 2006/15/CE, 2009/161/UE, 2017/164/UE ou 2019/1831/UE.

| BAT / VBT = DE: Biologischer Arbeitsstofftoleranzwert (BAT-Wert) (Grenzwerte am Arbeitsplatz, Schweizerische Unfallversicherungsanstalt (SUVA)) / FR: Valeurs biologiques tolérables (VBT) Valeurs limites d'exposition aux postes de travail, Caisse nationale suisse d'assurance en cas d'accidents (SUVA)):

DE: Untersuchungsmaterial: B = Vollblut, E = Erythrozyten, U = Urin, A = Alveolarluft, P/Se = Plasma/Serum.

Probennahmezeitpunkt: a = keine Beschränkung, b = Expositionsende, bzw. Schichtende, c = bei Langzeitexposition - nach mehreren vorangegangenen Schichten, d = vor nachfolgender Schicht.

FR: Substrat d'examen: B = Sang complet, E = Erythrocytes, U = Urine, A = Air alvéolaire, P/Se = Plasma/Sérum. Moment du prélèvement: a = indifférent, b = fin de l'exposition, de la période de travail, c = exposition de longue durée - après plusieurs périodes de travail, d = avant la reprise du travail.

(EU/UE) = DE: Richtlinie 98/24/EG oder 2004/37/EG / FR: Directive 98/24/CE ou 2004/37/CE. |

DE: Sonstiges (Grenzwerte am Arbeitsplatz, Schweizerische Unfallversicherungsanstalt (SUVA)) / FR: Divers (Valeurs limites d'exposition aux postes de travail, Caisse nationale suisse d'assurance en cas d'accidents (SUVA)):

DE: H = Hautresorption möglich. S = Sensibilisator. B = Biologisches Monitoring. OL = Lärmverstärkende Ototoxizität. P = provisorisch. C1A,C1B,C2 = Cancerogen Kat.1A,1B,2. M1A,M1B,M2 = Mutagen Cat.1A,1B,2. R1AF,R1BF,R2F/R1AD,R1BD,R2D = Reproduktionstox. Kat.1A,1B,2 (F=Fruchtbarkeit, D=Entwicklung). SS-A,SS-B,SS-C, = Schwangerschaft Gruppe A,B,C. FR: H = résorption via la peau pos. S = sensibilisateur. B = Monitoring biologique. OL = Ototoxicité aggravée par le bruit. P = valeur provisoire. C1A,C1B,C2 = cancérigène Cat.1A,1B,2. M1A,M1B,M2 = mutagène Cat.1A,1B,2.

R1AF,R1BF,R2F/R1AD,R1BD,R2D = Toxique pour la reproduction Cat.1A,1B,2 (F=fertilité, D=développement). SS-A,SS-B,SS-C = grossesse groupe A,B,C.

(EU/UE) = DE: Richtlinie 91/322/EWG, 98/24/EG, 2000/39/EG, 2004/37/EG, 2006/15/EG, 2009/161/EU, 2017/164/EU oder 2019/1831/EU / FR: Directive 91/322/CEE, 98/24/CE, 2000/39/CE, 2004/37/CE, 2006/15/CE, 2009/161/UE, 2017/164/UE ou 2019/1831/UE.

8.2 Begrenzung und Überwachung der Exposition

Die berufliche Verwendung dieses Produkts (dieses Stoffes / dieser Zubereitung) durch Jugendliche ist eingeschränkt oder ganz verboten. Die dazugehörigen Rechtsgrundlagen und genauen Bestimmungen sind in Abschnitt 15 aufgeführt (Schweiz). Die berufliche Verwendung dieses Produkts (dieses Stoffes / dieser Zubereitung) durch schwangere Frauen und stillende Mütter ist eingeschränkt oder ganz verboten (Schweiz).

Die dazugehörigen Rechtsgrundlagen und genauen Bestimmungen sind in Abschnitt 15 aufgeführt.

8.2.1 Geeignete technische Steuerungseinrichtungen

Für gute Lüftung sorgen. Dies kann durch lokale Absaugung oder allgemeine Abluft erreicht werden.

Falls dies nicht ausreicht, um die Konzentration unter den Arbeitsplatzgrenzwerten (AGW) zu halten, ist ein geeigneter Atemschutz zu tragen.

Gilt nur, wenn hier Expositionsgrenzwerte aufgeführt sind.

Geeignete Beurteilungsmethoden zur Überprüfung der Wirksamkeit der getroffenen Schutzmaßnahmen umfassen messtechnische und nichtmesstechnische Ermittlungsmethoden.

Solche werden beschrieben durch z.B. EN 14042, TRGS 402 (Deutschland).

EN 14042 "Arbeitsplatzatmosphäre. Leitfaden für die Anwendung und den Einsatz von Verfahren und Geräten zur Ermittlung chemischer und biologischer Arbeitsstoffe".

TRGS 402 (Deutschland) "Ermitteln und Beurteilen der Gefährdungen bei Tätigkeiten mit Gefahrstoffen - Inhalative Exposition".

8.2.2 Individuelle Schutzmaßnahmen, zum Beispiel persönliche Schutzausrüstung

Die allgemeinen Hygienemaßnahmen im Umgang mit Chemikalien sind anzuwenden.

Vor den Pausen und bei Arbeitsende Hände waschen.

Von Nahrungsmitteln, Getränken und Futtermitteln fernhalten.

Vor dem Betreten von Bereichen, in denen gegessen wird, kontaminierte Kleidung und Schutzausrüstungen ablegen.

D A C

Seite 13 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Augen-/Gesichtsschutz:

Schutzbrille dichtschließend mit Seitenschildern (EN 166).

Hautschutz - Handschutz:

Chemikalienbeständige Schutzhandschuhe (EN ISO 374).

Gegebenenfalls

Schutzhandschuhe aus Butyl (EN ISO 374)

Schutzhandschuhe aus Neoprene® / aus Polychloropren (EN ISO 374).

Schutzhandschuhe aus Nitril (EN ISO 374).

Mindestschichtstärke in mm:

0,5

Permeationszeit (Durchbruchzeit) in Minuten:

480

Die ermittelten Durchbruchzeiten gemäß EN 16523-1 wurden nicht unter Praxisbedingungen durchgeführt.

Es wird eine maximale Tragezeit, die 50% der Durchbruchzeit entspricht, empfohlen.

Handschutzcreme empfehlenswert.

Hautschutz - Sonstige Schutzmaßnahmen:

Arbeitsschutzkleidung (z.B. Sicherheitsschuhe EN ISO 20345, langärmelige Arbeitskleidung).

Im Normalfall nicht erforderlich.

Bei Überschreitung des Arbeitsplatzgrenzwertes (AGW, Deutschland) bzw. MAK (Schweiz, Österreich).

Atemschutzmaske Filter A (EN 14387), Kennfarbe braun

Tragezeitbegrenzungen für Atemschutzgeräte beachten.

Thermische Gefahren:

Nicht zutreffend

Zusatzinformation zum Handschutz - Es wurden keine Tests durchgeführt.

Die Auswahl wurde bei Gemischen nach bestem Wissen und über die Informationen der Inhaltsstoffe ausgewählt.

Die Auswahl wurde bei Stoffen von den Angaben der Handschuhhersteller abgeleitet.

Die endgültige Auswahl des Handschuhmaterials muss unter Beachtung der Durchbruchzeiten, Permeationsraten und der Degradation erfolgen.

Die Auswahl eines geeigneten Handschuhs ist nicht nur vom Material, sondern auch von weiteren Qualitätsmerkmalen abhängig und von Hersteller zu Hersteller unterschiedlich.

Bei Gemischen ist die Beständigkeit von Handschuhmaterialien nicht vorausberechenbar und muss deshalb vor dem Einsatz überprüft werden.

Die genaue Durchbruchzeit des Handschuhmaterials ist beim Schutzhandschuhhersteller zu erfahren und einzuhalten.

8.2.3 Begrenzung und Überwachung der Umweltexposition

Zur Zeit liegen keine Informationen hierzu vor.

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1 Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aggregatzustand: Flüssig Farbe: Dunkelgrün Charakteristisch Geruch:

Schmelzpunkt/Gefrierpunkt: Siedepunkt oder Siedebeginn und Siedebereich:

Entzündbarkeit:

Untere Explosionsgrenze: Obere Explosionsgrenze:

Flammpunkt: Zündtemperatur: Zersetzungstemperatur:

pH-Wert:

Kinematische Viskosität: Löslichkeit:

Verteilungskoeffizient n-Oktanol/Wasser (log-Wert):

Es liegen keine Informationen zu diesem Parameter vor. Es liegen keine Informationen zu diesem Parameter vor.

Es liegen keine Informationen zu diesem Parameter vor. Es liegen keine Informationen zu diesem Parameter vor. Es liegen keine Informationen zu diesem Parameter vor. Es liegen keine Informationen zu diesem Parameter vor.

Es liegen keine Informationen zu diesem Parameter vor. Es liegen keine Informationen zu diesem Parameter vor.

7 (100 %, 20°C, DIN 19268)

Es liegen keine Informationen zu diesem Parameter vor.

100 % (20°C)

Gilt nicht für Gemische.

- (ID) (A) (II)-

Seite 14 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Dampfdruck: Es liegen keine Informationen zu diesem Parameter vor.

Dichte und/oder relative Dichte: 1,135 g/cm3 (20°C, DIN 51757)

Relative Dampfdichte: Es liegen keine Informationen zu diesem Parameter vor.

Partikeleigenschaften: Gilt nicht für Flüssigkeiten.

9.2 Sonstige Angaben

Explosive Stoffe/Gemische und Erzeugnisse mit Explosivstoff: Produkt ist nicht explosionsgefährlich.

Oxidierende Flüssigkeiten: Es liegen keine Informationen zu diesem Parameter vor.

ABSCHNITT 10: Stabilität und Reaktivität

10.1 Reaktivität

Das Produkt wurde nicht geprüft.

10.2 Chemische Stabilität

Bei sachgerechter Lagerung und Handhabung stabil.

10.3 Möglichkeit gefährlicher Reaktionen

Keine gefährlichen Reaktionen bekannt.

10.4 Zu vermeidende Bedingungen

Keine bekannt

10.5 Unverträgliche Materialien

Kontakt mit starken Oxidationsmitteln meiden.

Kontakt mit starken Säuren meiden.

10.6 Gefährliche Zersetzungsprodukte

Keine Zersetzung bei bestimmungsgemäßer Verwendung.

ABSCHNITT 11: Toxikologische Angaben

11.1. Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Eventuell weitere Informationen über gesundheitliche Auswirkungen siehe Abschnitt 2.1 (Einstufung).

NIGRIN Caravan Toiletten-Zusatz									
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung			
Akute Toxizität, oral:	ATE	>2000	mg/kg			berechneter			
						Wert			
Akute Toxizität, dermal:						k.D.v.			
Akute Toxizität, inhalativ:						k.D.v.			
Ätz-/Reizwirkung auf die						k.D.v.			
Haut:									
Schwere Augenschädigung/-						k.D.v.			
reizung:									
Sensibilisierung der						k.D.v.			
Atemwege/Haut:									
Keimzellmutagenität:						k.D.v.			
Karzinogenität:						k.D.v.			
Reproduktionstoxizität:						k.D.v.			
Spezifische Zielorgan-						k.D.v.			
Toxizität - einmalige									
Exposition (STOT-SE):									
Spezifische Zielorgan-						k.D.v.			
Toxizität - wiederholte									
Exposition (STOT-RE):									
Aspirationsgefahr:						k.D.v.			
Symptome:						k.D.v.			

Calciumnitrat-Tetrahydrat						
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	3900	mg/kg	Ratte		

Ikohole, C12-15, ethoxyliei	rt					
oxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung

Seite 15 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

Akute Toxizität, oral:	LD50	1700	mg/kg	Ratte	
Symptome:					Augen, gerötet,
					Tränen der
					Augen,
					Blasenbildung
					bei
					Hautkontakt,
					Magenschmerz
					en

1-(1,2,3,4,5,6,7,8-Octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-on							
Toxizität / Wirkung Endpunkt Wert Einheit Organismus Prüfmethode Bemerkung							
Akute Toxizität, oral:	LD50	>5000	mg/kg	Ratte			
Akute Toxizität, dermal:	LD50	>5000	mg/kg	Kaninchen			

Dipenten						
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	5300	mg/kg	Ratte		
Akute Toxizität, dermal:	LD50	5000	mg/kg	Kaninchen		
Aspirationsgefahr:						Ja
Symptome:						Durchfall,
						Hautausschlag
						Juckreiz,
						Magen-Darm-
						Beschwerden,
						Schleimhautre
						ung, Übelkeit
						und Erbrechen

Linalylacetat						
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	>9000	mg/kg	Ratte		BASF test
Akute Toxizität, dermal:	LD50	>5000	mg/kg	Kaninchen		
Ätz-/Reizwirkung auf die				Kaninchen	OECD 404 (Acute	Skin Irrit. 2
Haut:					Dermal	
					Irritation/Corrosion)	
Schwere Augenschädigung/-				Kaninchen	OECD 405 (Acute	Eye Irrit. 2
reizung:					Eye	
					Irritation/Corrosion)	
Sensibilisierung der				Maus	OECD 429 (Skin	Ja
Atemwege/Haut:					Sensitisation - Local	(Hautkontakt)
					Lymph Node Assay)	
Keimzellmutagenität:				Salmonella	OECD 471 (Bacterial	Negativ
				typhimurium	Reverse Mutation	
					Test)	
Keimzellmutagenität:				Maus	OECD 473 (In Vitro	Negativ
					Mammalian	
					Chromosome	
					Aberration Test)	
Reproduktionstoxizität:	NOAEL	500	mg/kg	Ratte	OECD 421	
			bw/d		(Reproduction/Develop	
					mental Toxicity	
					Screening Test)	
Reproduktionstoxizität:	NOEL	500	mg/kg	Ratte	OECD 414 (Prenatal	
			bw/d		Developmental	
					Toxicity Study)	
Aspirationsgefahr:						Nein

Seite 16 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

Symptome:						Ataxie,
						Benommenheit,
						Kopfschmerzen
						,
						Magenschmerz
						en,
						Schläfrigkeit,
						Schleimhautreiz
						ung,
						Schwindel,
						Übelkeit und
						Erbrechen
Spezifische Zielorgan-	NOAEL	160	mg/kg	Ratte	OECD 407 (Repeated	
Toxizität - wiederholte			bw/d		Dose 28-Day Oral	
Exposition (STOT-RE), oral:					Toxicity Study in	
					Rodents)	
Spezifische Zielorgan-	NOAEL	250	mg/kg	Ratte	OECD 411	
Toxizität - wiederholte			bw/d		(Subchronic Dermal	
Exposition (STOT-RE),					Toxicity - 90-day	
dermal:					Study)	

Linalool						
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	2790	mg/kg	Ratte	OECD 401 (Acute	
					Oral Toxicity)	
Akute Toxizität, dermal:	LD50	5610	mg/kg	Kaninchen	OECD 402 (Acute	
					Dermal Toxicity)	
Ätz-/Reizwirkung auf die				Kaninchen	OECD 404 (Acute	Skin Irrit. 2
Haut:					Dermal	
					Irritation/Corrosion)	
Schwere Augenschädigung/-				Kaninchen	OECD 405 (Acute	Eye Irrit. 2
reizung:					Eye	·
					Irritation/Corrosion)	
Sensibilisierung der				Maus	OECD 429 (Skin	Skin Sens. 1E
Atemwege/Haut:					Sensitisation - Local	
					Lymph Node Assay)	
Keimzellmutagenität:				Maus	OECD 474	Negativ
					(Mammalian	
					Erythrocyte	
					Micronucleus Test)	
Keimzellmutagenität:				Salmonella	OECD 471 (Bacterial	Negativ
				typhimurium	Reverse Mutation	
					Test)	
Keimzellmutagenität:				Maus	OECD 476 (In Vitro	Negativ
-					Mammalian Cell Gene	
					Mutation Test)	

[3R-(3.alpha.,3a.beta.,7.beta	[3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]-2,3,4,7,8,8a-Hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen							
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung		
Akute Toxizität, oral:	LD50	>5000	mg/kg	Ratte				
Akute Toxizität, dermal:	LD50	>5000	mg/kg	Kaninchen				
Aspirationsgefahr:						Ja		
Symptome:						Atemnot,		
						Husten,		
						Schleimhautreiz		
						ung		

1-(2,6,6-Trimethyl-3-cyclohe)	cen-1-yl)-2-bu	iten-1-on				
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	1625-1821	mg/kg	Maus		
Akute Toxizität, dermal:	LD50	>5000	mg/kg	Kaninchen	OECD 402 (Acute	
					Dermal Toxicity)	

Seite 17 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Sensibilisierung der		Maus	OECD 429 (Skin	Ja
Atemwege/Haut:			Sensitisation - Local	(Hautkontakt)
			Lymph Node Assay)	

Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	1193	mg/kg	Ratte		
Akute Toxizität, oral:	LD50	490	mg/kg	Ratte		
Akute Toxizität, dermal:	LD50	4115	mg/kg	Ratte		
Akute Toxizität, inhalativ:	LC50	0,25	mg/l/4h	Ratte		Aerosol, Die EU-Einstufung stimmt hiermit nicht überein.
Ätz-/Reizwirkung auf die Haut:						Skin Irrit. 2
Schwere Augenschädigung/-reizung:						Eye Dam. 1
Sensibilisierung der Atemwege/Haut:				Meerschwein chen	OECD 406 (Skin Sensitisation)	Skin Sens. 1
Keimzellmutagenität:						Negativ
Reproduktionstoxizität (Entwicklungsschädigung):	NOAEL	112	mg/kg	Ratte		Negativ, WeibchenOPP S 870.3800
Reproduktionstoxizität (Wirkung auf die Fruchtbarkeit):	NOAEL	56,6	mg/kg bw/d	Ratte		Negativ, WeibchenOPP S 870.3800
Spezifische Zielorgan- Toxizität - wiederholte Exposition (STOT-RE), oral:	NOAEL	150	mg/kg bw/d	Ratte	OECD 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents)	Negativ
Symptome:						Erbrechen, Kopfschmerzei Magen-Darm- Beschwerden, Übelkeit

Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	ATE	500	mg/kg			
Akute Toxizität, dermal:	ATE	790	mg/kg			
Akute Toxizität, inhalativ:	ATE	0,5	mg/l			Stäube oder Nebel
Ätz-/Reizwirkung auf die Haut:				Kaninchen	OECD 404 (Acute Dermal Irritation/Corrosion)	Skin Irrit. 2
Schwere Augenschädigung/-reizung:				Kaninchen	OECD 405 (Acute Eye Irritation/Corrosion)	Eye Irrit. 2
Sensibilisierung der Atemwege/Haut:				Meerschwein chen	OECD 429 (Skin Sensitisation - Local Lymph Node Assay)	Skin Sens. 1
Spezifische Zielorgan- Toxizität - wiederholte Exposition (STOT-RE):	NOAEL	0,5	mg/kg		OECD 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)	
Symptome:						Hornhauttrübu g, Krämpfe, Müdigkeit, Schleimhautre ung, Zittern

Glycerin

(D) (A) (B)

Seite 18 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	>2000	mg/kg	Ratte		
Akute Toxizität, dermal:	LD50	>10000	mg/kg	Kaninchen		
Ätz-/Reizwirkung auf die				Kaninchen	IUCLID Chem. Data	Nicht reizend
Haut:					Sheet (ESIS)	
Schwere Augenschädigung/-				Kaninchen	OECD 405 (Acute	Nicht reizend
reizung:					Eye	
					Irritation/Corrosion)	
Sensibilisierung der				Meerschwein		Nein
Atemwege/Haut:				chen		(Hautkontakt)
Keimzellmutagenität:				Salmonella	OECD 471 (Bacterial	Negativ
				typhimurium	Reverse Mutation	
					Test)	
Reproduktionstoxizität:	NOAEL	2000	mg/kg/d			Negativ
Spezifische Zielorgan-	NOAEL	3,91	mg/l	Ratte		(14d)
Toxizität - wiederholte						
Exposition (STOT-RE):						
Aspirationsgefahr:						Negativ
Symptome:						Bauchschmerze
						n,
						Benommenheit
						Durchfall,
						Erbrechen,
						Kopfschmerzer
						Schleimhautrei
						zung, Übelkeit

Oxydipropanol						
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
Akute Toxizität, oral:	LD50	14850	mg/kg	Ratte		
Akute Toxizität, dermal:	LD50	>5000	mg/kg	Kaninchen		
Ätz-/Reizwirkung auf die						Nicht reizend
Haut:						
Schwere Augenschädigung/-				Kaninchen		Nicht reizend
reizung:						
Sensibilisierung der				Mensch	OECD 406 (Skin	Nicht
Atemwege/Haut:					Sensitisation)	sensibilisierend
Keimzellmutagenität:					OECD 471 (Bacterial	Negativ
					Reverse Mutation	
					Test)	
Karzinogenität:	NOAEL	2330	mg/kg	Ratte		Negativ
			bw/d			
Reproduktionstoxizität	NOAEL	800	mg/kg	Ratte	OECD 414 (Prenatal	Negativ
(Wirkung auf die			bw/d		Developmental	
Fruchtbarkeit):					Toxicity Study)	
Reproduktionstoxizität	NOAEC	5000	mg/kg	Ratte		
(Entwicklungsschädigung):			bw/d			
Symptome:						Benommenheit,
						Bewußtlosigkeit
						,
						Kopfschmerzen
						Krämpfe,
						Schläfrigkeit,
						Zittern
Spezifische Zielorgan-	NOAEL	470	mg/kg	Ratte		Männchen
Toxizität - wiederholte			bw/d			
Exposition (STOT-RE), oral:						

11.2. Angaben über sonstige Gefahren

NIGRIN Caravan Toiletten-Zusatz								
Toxizität / Wirkung	Endpunkt	Wert	Einheit	Organismus	Prüfmethode	Bemerkung		

(A)(A)	(CH)_
	-

Seite 19 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Endokrinschädliche Eigenschaften:			Gilt nicht für Gemische.
Sonstige Angaben:			Keine sonstigen, einschlägigen Angaben über schädliche Wirkungen auf die Gesundheit vorhanden.

ABSCHNITT 12: Umweltbezogene Angaben

Eventuell weitere Informationen über Umweltauswirkungen siehe Abschnitt 2.1 (Einstufung).

NIGRIN Caravan Toiler Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:			11011	Limit	J. gamonias	i i dillictifodo	k.D.v.
12.1. Toxizität,							k.D.v.
Daphnien:							K.D.V.
12.1. Toxizität, Algen:							k.D.v.
12.2. Persistenz und							Das (Die) in
Abbaubarkeit:							dieser
Abbaabancit.							Zubereitung
							enthaltene(n)
							Tensid(e)
							erfüllt(erfüllen)
							die
							Bedingungen
							der
							biologischen
							Abbaubarkeit
							wie sie in der
							Verordnung
							(EG) Nr.
							648/2004 übei
							Detergenzien
							festgelegt since
							Unterlagen, di
							dies
							bestätigen,
							werden für die
							zuständigen
							Behörden der
							Mitgliedsstaate
							bereit gehalte
							und nur dieser
							entweder auf
							ihre direkte
							oder auf Bitte
							eines
							Detergentienh
							stellers hin zur
							Verfügung
10.0			+				gestellt.
12.3. Bioakkumulationspote							k.D.v.
nzial:							
nziai: 12.4. Mobilität im			+				k.D.v.
Boden:							K.D.V.
Duuen.							

Seite 20 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

12.5. Ergebnisse der PBT- und vPvB-					k.D.v.
Beurteilung:					
12.6.					Gilt nicht für
Endokrinschädliche Eigenschaften:					Gemische.
12.7. Andere					Keine Angaben
schädliche Wirkungen:					über andere
					schädliche
					Wirkungen für die Umwelt
					vorhanden.
Sonstige Angaben:	AOX	0	%		Enthält keine
					organisch
					gebundene
					Halogene, die
					zum AOX-Wert
					im Abwasser
					beitragen
Sonstige Angaben:					können. DOC-
Sonstige Angaben.					Eliminierungsgr
					ad (organische
					Komplexbildner)
					>= 80%/28d:
					Ja

Alkohole, C12-15, etho	Alkohole, C12-15, ethoxyliert										
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung				
12.1. Toxizität, Fische:	LC50	96h	1-10	mg/l	Brachydanio rerio						
12.1. Toxizität,	EC50	48h	1-10	mg/l	Daphnia magna						
Daphnien:											
12.1. Toxizität, Algen:	EC50	72h	1-10	mg/l	Desmodesmus						
					subspicatus						
12.2. Persistenz und		28d	71	%		Regulation (EC)	Leicht				
Abbaubarkeit:						440/2008 C.4-D	biologisch				
						(DETERMINATI	abbaubar				
						ON OF 'READY'					
						BIODEGRAD					
						MANOMETRIC					
						RESPIROMETR					
						Y TEST)					
12.5. Ergebnisse der							Kein PBT-Stoff,				
PBT- und vPvB-							Kein vPvB-Stoff				
Beurteilung:											

Dipenten							
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	EC50	96h	20,2	mg/l	Pimephales		
					promelas		
12.1. Toxizität, Fische:	LC50	96h	38,5	mg/l	Pimephales		
					promelas		
12.1. Toxizität,	EC50	48h	70	mg/l	Daphnia pulex		
Daphnien:							
12.1. Toxizität,	EC50	48h	28,2	mg/l	Daphnia magna		
Daphnien:							
12.1. Toxizität, Algen:	IC50	78h	13,798	mg/l	Pseudokirchnerie		
					lla subcapitata		

Seite 21 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

12.2. Persistenz und Abbaubarkeit:		28d	83	%	OECD 301 D (Ready Biodegradability - Closed Bottle Test)	Leicht biologisch abbaubar
12.3. Bioakkumulationspote nzial:	Log Pow		4,57		,	Hoch
12.5. Ergebnisse der PBT- und vPvB- Beurteilung:						Kein PBT-Stoff, Kein vPvB-Stoff

Linalylacetat Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	11	mg/l	Cyprinus carpio	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxizität, Daphnien:	EC50	48h	15	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	
12.1. Toxizität, Algen:	EC50	96h	88,3	mg/l	Desmodesmus subspicatus	DIN 38412 T.9	
12.2. Persistenz und Abbaubarkeit:		28d	70-80	%		OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Leicht biologisch abbaubar
12.3. Bioakkumulationspote nzial:	Log Pow		3,9				
12.3. Bioakkumulationspote nzial:	BCF		173,9				Niedrig
Sonstige Angaben:	Koc		517,9				
Sonstige Angaben:	Log Koc		2,71				
Sonstige Angaben:	H (Henry)		176,31				

Linalool							
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	27,8	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxizität, Daphnien:	EC50	48h	59	mg/l	Daphnia magna	DIN 38412 T.11	
12.1. Toxizität, Algen:	EC50	96h	156,7	mg/l	Scenedesmus subspicatus	OECD 201 (Alga, Growth Inhibition Test)	
12.2. Persistenz und Abbaubarkeit:	BOD	28d	64,2	%		OECD 301 D (Ready Biodegradability - Closed Bottle Test)	Leicht biologisch abbaubar

Seite 22 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

12.3. Bioakkumulationspote nzial:	Log Pow		2,84			OECD 107 (Partition Coefficient (n- octanol/water) - Shake Flask Method)	Ein nennenswertes Bioakkumulatio nspotential ist nicht zu erwarten (LogPow 1-3)., Niedrig25 °C
12.5. Ergebnisse der PBT- und vPvB- Beurteilung:							Kein PBT-Stoff, Kein vPvB-Stoff
Bakterientoxizität:	EC50	3h	> 100	mg/l	activated sludge	OECD 209 (Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation))	

[3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]-2,3,4,7,8,8a-Hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen									
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung		
12.1. Toxizität,	EC50	48h	0,044	mg/l	Daphnia pulex				
Daphnien:									
12.3.	Log Pow		5,74				Hoch		
Bioakkumulationspote									
nzial:									

1-(2,6,6-Trimethyl-3-cy	(2,6,6-Trimethyl-3-cyclohexen-1-yl)-2-buten-1-on								
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung		
12.1. Toxizität, Fische:	LC50	96h	0,977	mg/l					
12.1. Toxizität,	EC50	48h	1,18	mg/l	Daphnia magna	OECD 211			
Daphnien:						(Daphnia magna			
						Reproduction			
						Test)			
12.2. Persistenz und		28d	16	%		OECD 301 C	Nicht		
Abbaubarkeit:						(Ready	biologisch		
						Biodegradability -	abbaubar		
						Modified MITI			
						Test (I))			
12.3.	Log Pow		4,2				Hoch		
Bioakkumulationspote									
nzial:									

1,2-Benzisothiazol-3(2H)-on							
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	2,18	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxizität, Daphnien:	EC50	48h	2,94	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	
12.1. Toxizität, Algen:	EC50	72h	0,11	mg/l	Pseudokirchnerie Ila subcapitata	OECD 201 (Alga, Growth Inhibition Test)	
12.1. Toxizität, Algen:	NOEC/NOEL	72h	0,027- 0,0403	mg/l	Skeletonema costatum	OECD 201 (Alga, Growth Inhibition Test)	

Seite 23 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

		90	%		(Inherent	
DOC		. 70	0/		OFCD 202 A	
DOC		>/0	70			
					OFCD 301 B	Leicht
						biologisch
						abbaubar
						abbaabai
BCF		6,95				
		,			(Bioconcentration	
					- Flow-Through	
					Fish Test)	
Log Pow		0,7				
					COEFFICIENT)	
						Kein PBT-Stoff,
						Kein vPvB-Stoff
EC50	3h	12,8	mg/l	activated sludge		
EC20	3h	3 3	ma/l	activated sludge		
LUZU	311	3,3	1119/1	activated studge		
					Oxidation))	
	DOC BCF Log Pow EC50	BCF Log Pow EC50 3h	BCF 6,95 Log Pow 0,7 EC50 3h 12,8	DOC >70 % BCF 6,95 Log Pow 0,7 EC50 3h 12,8 mg/l	DOC >70 % BCF 6,95 Log Pow 0,7 EC50 3h 12,8 mg/l activated sludge	Company Comp

Pyridin-2-thiol-1-oxid,	Natriumsalz						
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	0,00767	mg/l	Brachydanio rerio	OECD 203	
						(Fish, Acute	
						Toxicity Test)	
12.1. Toxizität,	LC50	48h	0,150	mg/l	Daphnia magna	OECD 202	Literaturangabe
Daphnien:						(Daphnia sp.	n
						Acute	
						Immobilisation	
						Test)	
12.1. Toxizität, Algen:	LC50	72h	0,22	mg/l	Desmodesmus	OECD 201	Literaturangabe
					subspicatus	(Alga, Growth	n
						Inhibition Test)	
12.1. Toxizität, Algen:	NOEC/NOEL	72h	0,033	mg/l	Desmodesmus	OECD 201	Literaturangabe
					subspicatus	(Alga, Growth	n
						Inhibition Test)	

Seite 24 von 31 Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004 Tritt in Kraft ab: 27.11.2023

12.2. Persistenz und	28d	79	%	activated sludge	OECD 301 B	Leicht
Abbaubarkeit:					(Ready	biologisch
					Biodegradability -	abbaubar
					Co2 Evolution	
					Test)	

Glycerin				T	T		
Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	> 5000	mg/l	Carassius auratus		
12.1. Toxizität, Daphnien:	EC50	48h	>10000	mg/l	Daphnia magna		
12.1. Toxizität, Daphnien:	EC5	72h	3200	mg/l			Entosiphon sulcatum
12.1. Toxizität, Algen:	EC50		2900	mg/l	Chlorella vulgaris		
12.2. Persistenz und Abbaubarkeit:		14d	63	%		OECD 301 C (Ready Biodegradability - Modified MITI Test (I))	
12.2. Persistenz und Abbaubarkeit:	BOD/COD		>60	%			
12.2. Persistenz und Abbaubarkeit:	BOD5/COD		> 50	%			
12.2. Persistenz und Abbaubarkeit:	DOC		>70	%			Leicht biologisch abbaubar
12.2. Persistenz und Abbaubarkeit:	BOD5		0,87	g/g			
12.2. Persistenz und Abbaubarkeit:	COD		1,16	g/g			
12.3. Bioakkumulationspote nzial:	Log Pow		-1,75			OECD 107 (Partition Coefficient (n- octanol/water) - Shake Flask Method)	Eine Bioakkumulation ist nicht zu erwarten (LogPow < 1).
12.5. Ergebnisse der PBT- und vPvB- Beurteilung:							Kein PBT-Stof Kein vPvB-Sto
Bakterientoxizität:	EC5	16h	> 10000	mg/l	Pseudomonas putida		

Toxizität / Wirkung	Endpunkt	Zeit	Wert	Einheit	Organismus	Prüfmethode	Bemerkung
12.1. Toxizität, Fische:	LC50	96h	>100	mg/l	Leuciscus idus		
12.1. Toxizität,	NOEC/NOEL		1-10	mg/l			
Daphnien:							
12.1. Toxizität,	EC50	48h	>100	mg/l	Daphnia magna	OECD 202	
Daphnien:						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxizität, Algen:	LC50		>100	mg/l	Desmodesmus	OECD 201	
					subspicatus	(Alga, Growth	
						Inhibition Test)	
12.2. Persistenz und		28d	16	%		OECD 301 D	
Abbaubarkeit:						(Ready	
						Biodegradability -	
						Closed Bottle	
						Test)	

-DA (H-

Seite 25 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

12.2. Persistenz und		28d	100	%		OECD 302 B	Leicht
Abbaubarkeit:						(Inherent	biologisch abbaubar
						Biodegradability - Zahn-	abbaubai
						Wellens/EMPA	
						Test)	
12.2. Persistenz und		28d	84,4	%		OECD 301 F	Leicht
Abbaubarkeit:			0 ., .	,,,		(Ready	biologisch
						Biodegradability -	abbaubar
						Manometric	
						Respirometry	
						Test)	
12.2. Persistenz und		42d	83,6	%		OECD 302 A	Leicht
Abbaubarkeit:						(Inherent	biologisch
						Biodegradability -	abbaubar
						Modified SCAS	
						Test)	
12.3.	Log Pow		-0,462				
Bioakkumulationspote							
nzial: 12.3.	BCF	+	0,3-4,6		Cyprinus conris	OECD 305	Eine
Bioakkumulationspote	BCF		0,3-4,6		Cyprinus caprio	(Bioconcentration	Bioakkumulatio
nzial:						- Flow-Through	n ist nicht zu
riziai.						Fish Test)	erwarten
						1 1311 1 (31)	(LogPow < 1).
12.5. Ergebnisse der		+					Kein PBT-Stoff,
PBT- und vPvB-							Kein vPvB-Stoff
Beurteilung:							
Bakterientoxizität:	EC10	18h	>=1000	mg/l	Pseudomonas putida		
Sonstige Angaben:	COD	+	1840	mg/g	ραιία		

ABSCHNITT 13: Hinweise zur Entsorgung

13.1 Verfahren zur Abfallbehandlung Für den Stoff / Gemisch / Restmengen

Abfallschlüssel-Nr. EG:

Die genannten Abfallschlüssel sind Empfehlungen aufgrund der voraussichtlichen Verwendung dieses Produktes.

Aufgrund der speziellen Verwendung und Entsorgungsgegebenheiten beim Verwender können unter Umständen auch andere Abfallschlüssel zugeordnet werden. (2014/955/EU)

20 01 29 Reinigungsmittel, die gefährliche Stoffe enthalten

Empfehlung:

Von der Entsorgung über das Abwasser ist abzuraten.

Örtlich behördliche Vorschriften beachten.

Zum Beispiel geeignete Verbrennungsanlage.

Zum Beispiel auf geeigneter Deponie ablagern.

Verordnung über die Vermeidung und die Entsorgung von Abfällen in der letztgültigen Fassung beachten (Abfallverordnung, VVEA, SR 814.600, Schweiz).

Verordnung über den Verkehr mit Abfällen in der letztgültigen Fassung beachten (VeVA, SR 814.610, Schweiz).

Verordnung des UEVK über Listen zum Verkehr mit Abfällen in der letztgültigen Fassung beachten (SR 814.610.1, Schweiz).

Für verunreinigtes Verpackungsmaterial

Örtlich behördliche Vorschriften beachten.

Behälter vollständig entleeren.

Nicht kontaminierte Verpackungen können wiederverwendet werden.

Nicht reinigungsfähige Verpackungen sind wie der Stoff zu entsorgen.

Verordnung über die Vermeidung und die Entsorgung von Abfällen in der letztgültigen Fassung beachten (Abfallverordnung, VVEA, SR 814.600, Schweiz).

Verordnung über den Verkehr mit Abfällen in der letztgültigen Fassung beachten (VeVA, SR 814.610, Schweiz).

-DA (H)

Seite 26 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Verordnung des UEVK über Listen zum Verkehr mit Abfällen in der letztgültigen Fassung beachten (SR 814.610.1, Schweiz).

ABSCHNITT 14: Angaben zum Transport

Allgemeine Angaben

Straßen- / Schienentransport (GGVSEB/ADR/RID)

14.1. UN-Nummer oder ID-Nummer: 308

14.2. Ordnungsgemäße UN-Versandbezeichnung:

UN 3082 UMWELTGEFÄHRDENDER STOFF, FLÜSSIG, N.A.G. (1-(1,2,3,4,5,6,7,8-OCTAHYDRO-2,3,8,8-

TETRAMETHYL-2-NAPHTHYL)ETHAN-1-ON, DIPENTEN)

14.3. Transportgefahrenklassen: 9
14.4. Verpackungsgruppe: III

14.5. Umweltgefahren: umweltgefährdend

Tunnelbeschränkungscode:

Klassifizierungscode: M6 LQ: 5 L Beförderungskategorie: 3

Beförderung mit Seeschiffen (GGVSee/IMDG-Code)

14.1. UN-Nummer oder ID-Nummer: 3082

14.2. Ordnungsgemäße UN-Versandbezeichnung:

UN 3082 ENVIRONMENTALLY HAZARDOUS SÜBSTANCE, LIQUID, N.O.S. (1-(1,2,3,4,5,6,7,8-OCTAHYDRO-

2,3,8,8-TETRAMETHYL-2-NAPHTHYL)ETHAN-1-ONE, DIPÉNTENE)
14.3. Transportgefahrenklassen:

14.4. Verpackungsgruppe:

14.5. Umweltgefahren: environmentally hazardous

Meeresschadstoff (Marine Pollutant):

EmS:

Ja

F-A, S-F

Beförderung mit Flugzeugen (IATA)

14.1. UN-Nummer oder ID-Nummer: 3082

14.2. Ordnungsgemäße UN-Versandbezeichnung:

UN 3082 Environmentally hazardous substance, liquid, n.o.s. (1-(1,2,3,4,5,6,7,8-OCTAHYDRO-2,3,8,8-

TETRAMETHYL-2-NAPHTHYL)ETHAN-1-ONE, DIPENTENE)

14.3. Transportgefahrenklassen:
9
14.4. Verpackungsgruppe:
III

14.5. Umweltgefahren: environmentally hazardous

14.6. Besondere Vorsichtsmaßnahmen für den Verwender

Mit der Beförderung gefährlicher Güter beschäftigte Personen müssen unterwiesen sein.

Vorschriften für die Sicherung sind von allen an der Beförderung beteiligten Personen zu beachten.

Vorkehrungen zur Vermeidung von Schadensfällen sind zu treffen.

14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Die Fracht erfolgt nicht als Massengut sondern als Stückgut, daher nicht zutreffend.

Mindermengenregelungen werden hier nicht beachtet.

Gefahrennummer sowie Verpackungscodierung auf Anfrage.

Sondervorschriften (special provisions) beachten.

ABSCHNITT 15: Rechtsvorschriften

15.1 Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Beschränkungen beachten:

Nationale Verordnungen/Gesetze zum Jugendarbeitsschutz beachten (insb. die nationale Implementierung der Richtlinie 94/33/EG)! Nationale Verordnungen/Gesetze zum Mutterschutz beachten (insb. die nationale Implementierung der Richtlinie 92/85/EWG)! Berufsgenossenschaftliche/arbeitsmedizinische Vorschriften beachten.

Richtlinie 2012/18/EU ("Seveso-III"), Anhang I, Teil 1 - Folgende Kategorien treffen für dieses Produkt zu (u.U. sind weitere zu berücksichtigen je nach Lagerung, Handhabung etc.):

D A (H)

Seite 27 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Gefahrenkategorien	Anmerkungen zu Anhang I	Mengenschwelle (in Tonnen) für gefährliche Stoffe gemäß Artikel 3 Absatz 10 für die Anwendung von - Anforderungen an Betriebe der unteren Klasse	Mengenschwelle (in Tonnen) für gefährliche Stoffe gemäß Artikel 3 Absatz 10 für die Anwendung von - Anforderungen an Betriebe der oberen Klasse
E2		200	500

Für die Zuordnung der Kategorien und Mengenschwellen sind immer die Anmerkungen zu Anhang I der Richtlinie 2012/18/EU zu beachten, insb. die in den Tabellen hier genannten und die Anm. 1 - 6.

Richtlinie 2010/75/EU (VOC):

~ 3,7 %

Verordnung (EG) Nr. 648/2004

5 % und darüber, jedoch weniger als 15 % nichtionische Tenside

Duftstoffe LIMONENE LINALOOL **GERANIOL CITRAL**

BENZISOTHIAZOLINONE

LAURYLAMINE DIPROPYLENEDIAMINE

SODIUM PYRITHIONE

Wassergefährdungsklasse (Deutschland):

Flüssigkeit der Klasse A (d.h. Flüssigkeiten, die Wasser in kleinen Mengen verunreinigen können) gem. "Klassierung wassergefährdender Flüssigkeiten" (Schweiz).

Störfallverordnung beachten.

Technische Anleitung zur Reinhaltung der Luft - TA Luft:

Kapitel 5.2.1 - Gesamtstaub (anorgan. und organ. Stoffe, allgemein, keiner Klasse zugeordnet):

10,00 -< 25,00 %

Kapitel 5.2.5 - Organische Stoffe (nicht staubförmige org.

Stoffe, allgemein, keiner Klasse zugeordnet): 50,00 -< 75,00 %

Kapitel 5.2.5 - Organische Stoffe, Klasse I:

< 0.1 %

Jugendarbeitsschutzgesetz - JArbSchG beachten (Deutschland).

Mutterschutzgesetz - MuSchG beachten (Deutschland).

Arbeitsplatzgrenzwerte/Biologische Grenzwerte siehe Abschnitt 8.

Die TRGS 401 (Deutschland) "Gefährdung durch Hautkontakt - Ermittlung, Beurteilung, Maßnahmen" beachten.

Lagerklasse nach TRGS 510:

12 Nicht brennbare Flüssigkeiten, die keiner der vorgenannten Lagerklassen zuzuordnen sind

VbF (Österreich): entfällt VOC-CH: <0,0422 kg/1l

Beschäftigungsverbote und -beschränkungen für Jugendliche (KJBG-VO) beachten (Österreich).

Mutterschutzgesetz (MSchG) beachten (Österreich).

Jugendliche in der beruflichen Grundbildung dürfen nur mit diesem Produkt (diesem Stoff / dieser Zubereitung) arbeiten, wenn dies in der jeweiligen Bildungsverordnung zur Erreichung ihres Ausbildungszieles vorgesehen ist,

die Voraussetzungen des Bildungsplans erfüllt sind und die geltenden Altersbeschränkungen eingehalten werden. Jugendliche, die keine berufliche Grundbildung absolvieren, dürfen nicht mit diesem Produkt (diesem Stoff / dieser Zubereitung) arbeiten.

Jugendliche mit einem eidgenössischen Berufsattest (EBA) oder einem eidgenössischen Fähigkeitszeugnis (EFZ) dürfen im Rahmen des erlernten Berufs gefährliche Arbeiten mit diesem Produkt (diesem Stoff / dieser Zubereitung) durchführen.

Als Jugendliche gelten Arbeitnehmer beider Geschlechter bis zum vollendeten 18. Altersjahr. (Schweiz).

Schwangere Frauen und stillende Mütter dürfen bei ihrer Arbeit nicht mit diesem Produkt (diesem Stoff / dieser Zubereitung) in Kontakt kommen. Steht aufgrund einer Risikobeurteilung fest, dass keine konkrete gesundheitliche Belastung

für Mutter und Kind vorliegt oder diese durch geeignete Schutzmassnahmen ausgeschlossen werden kann, dürfen sie mit diesem Produkt (diesem Stoff / dieser Zubereitung) arbeiten (Art. 62 ArGV 1, SR 822.111 (Schweiz)).

Nationale Vorgaben/Verordnung über Sicherheit und Gesundheitsschutz bei Verwendung von Arbeitsmitteln sind anzuwenden.

D A C

Seite 28 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

MAK/BAT:

Siehe Abschnitt 8.

Chemikalienverordnung, ChemV beachten (SR 813.11, Schweiz).

Chemikalien-Risikoreduktions-Verordnung, ChemRRV beachten (SR 814.81, Schweiz).

Luftreinhalte-Verordnung, LRV beachten (SR 814.318.142.1, Schweiz).

Verordnung über den Schutz vor Störfällen (Störfallverordnung, StFV) beachten (SR 814.012, Schweiz).

15.2 Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung ist für Gemische nicht vorgesehen.

ABSCHNITT 16: Sonstige Angaben

Überarbeitete Abschnitte:

15

Schulung der Mitarbeiter im Umgang mit Gefahrgütern erforderlich.

Diese Angaben beziehen sich auf das Produkt im Anlieferzustand.

Einweisung/Schulung der Mitarbeiter für den Umgang mit Gefahrstoffen erforderlich.

Einstufung und verwendete Verfahren zur Ableitung der Einstufung des Gemisches gemäß der Verordnung (EG) 1272/2008 (CLP):

Einstufung gemäß Verordnung (EG) Nr. 1272/2008 (CLP)	Verwendete Bewertungsmethode
Skin Irrit. 2, H315	Einstufung gemäß Berechnungsverfahren.
Eye Dam. 1, H318	Einstufung gemäß Berechnungsverfahren.
Skin Sens. 1, H317	Einstufung gemäß Berechnungsverfahren.
Aquatic Chronic 2, H411	Einstufung gemäß Berechnungsverfahren.

Nachfolgende Sätze stellen die ausgeschriebenen H-Sätze, Gefahrenklasse-Code (GHS/CLP) der Ingredienten dar.

H226 Flüssigkeit und Dampf entzündbar.

H317 Kann allergische Hautreaktionen verursachen.

H302 Gesundheitsschädlich bei Verschlucken.

H304 Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

H311 Giftig bei Hautkontakt.

H315 Verursacht Hautreizungen.

H318 Verursacht schwere Augenschäden.

H319 Verursacht schwere Augenreizung.

H331 Giftig bei Einatmen.

H372 Schädigt die Organe bei längerer oder wiederholter Exposition.

H400 Sehr giftig für Wasserorganismen.

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

H272 Kann Brand verstärken, Oxidationsmittel.

EUH070 Giftig bei Berührung mit den Augen.

Skin Irrit. — Reizwirkung auf die Haut

Eye Dam. — Schwere Augenschädigung

Skin Sens. — Sensibilisierung der Haut

Aquatic Chronic — Gewässergefährdend - chronisch

Ox. Sol. — Oxidierende Feststoffe

Eye Irrit. — Augenreizung

Acute Tox. — Akute Toxizität - oral Flam. Liq. — Entzündbare Flüssigkeiten Asp. Tox. — Aspirationsgefahr

Aquatic Acute — Gewässergefährdend - akut

Acute Tox. — Akute Toxizität - dermal

Acute Tox. — Akute Toxizität - inhalativ

STOT RE — Spezifische Zielorgan-Toxizität (wiederholte Exposition)

-DA (H-

Seite 29 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

Wichtige Literatur und Datenquellen:

Verordnung (EG) Nr. 1907/2006 (REACH) und Verordnung (EG) Nr. 1272/2008 (CLP) in der jeweils gültigen Fassung.

Leitlinien zur Erstellung von Sicherheitsdatenblättern in der gültigen Fassung (ECHA).

Leitlinien zur Kennzeichnung und Verpackung gemäß Verordnung (EG) Nr. 1272/2008 (CLP) in der gültigen Fassung (ECHA). Sicherheitsdatenblätter der Inhaltsstoffe.

ECHA-homepage - Informationen über Chemikalien.

GESTIS-Stoffdatenbank (Deutschland).

Umweltbundesamt "Rigoletto" Informationsseite Wassergefährdende Stoffe (Deutschland).

EU-Arbeitsplatzgrenzwerte Richtlinien 91/322/EWG, 2000/39/EG, 2006/15/EG, 2009/161/EU, (EU) 2017/164, (EU) 2019/1831 in der jeweils gültigen Fassung.

Nationale Arbeitsplatzgrenzwerte-Listen der jeweiligen Länder in der jeweils gültigen Fassung.

Vorschriften zum Transport gefährlicher Güter im Straßen-, Schienen-, See- und Luftverkehr (ADR, RID, IMDG, IATA) in der jeweils gültigen Fassung.

Eventuell in diesem Dokument verwendete Abkürzungen und Akronyme:

ADR Accord européen relatif au transport international des marchandises Dangereuses par Route (= Europäisches

Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße)

alkoholbest. alkoholbeständig

allg. Allgemein

Anm. Anmerkung

AOX Adsorbierbare organische Halogenverbindungen

Art., Art.-Nr. Artikelnummer

ASTM ASTM International (American Society for Testing and Materials)

ATE Acute Toxicity Estimate (= Schätzwert der akuten Toxizität)

BAFU Bundesamt für Umwelt (Schweiz)

BAM Bundesanstalt für Materialforschung und -prüfung

BAuA Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

BCF Bioconcentration factor (= Biokonzentrationsfaktor)

Bem. Bemerkung

BG Berufsgenossenschaft

BG BAU Berufsgenossenschaft der Bauwirtschaft (Deutschland)

BSEF The International Bromine Council

bw body weight (= Körpergewicht)

bzw. beziehungsweise

ca. zirka / circa

CAS Chemical Abstracts Service

ChemRRV Chemikalien-Risikoreduktions-Verordnung (Schweiz)

CLP Classification, Labelling and Packaging (VERORDNUNG (EG) Nr. 1272/2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen)

CMR carcinogen, mutagen, reproduktionstoxisch (krebserzeugend, erbgutverändernd, fortpflanzungsgefährdend)

DMEL Derived Minimum Effect Level (= abgeleiteter Minimaler-Effekt-Grenzwert)

DNEL Derived No Effect Level (= abgeleiteter Nicht-Effekt-Grenzwert)

DOC Dissolved organic carbon (= Gelöster organischer Kohlenstoff)

dw dry weight (= Trockengewicht)

EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants) (=

Konzentration/Dosis mit einer Wirkung von x % auf die Reduktion der Biomasse (Algen, Pflanzen))

ECHA European Chemicals Agency (= Europäische Chemikalienagentur)

ECx, ELx (x = 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect (= Konzentration/Dosis mit einer Wirkung von x %)

EG Europäische Gemeinschaft

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of Notified Chemical Substances

EN Europäischen Normen

EPA United States Environmental Protection Agency (United States of America)

ErCx, EµCx, ErLx (x = 10, 50) Effect concentration/Level of x % on inhibition of the growth rate (algae, plants) (= Konzentration mit einer Wirkung von x % auf die Hemmung der Wachstumsrate (Algen, Pflanzen))

etc., usw. et cetera, und so weiter

EU Europäische Union

D A C

Seite 30 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

EVAL Ethylen-Vinylalkohol-Copolymer

EWG Europäische Wirtschaftsgemeinschaft

Fax. Faxnummer gem. gemäß gegebenenfalls ggf.

GGVSEB Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt (Deutschland)

Gefahrgutverordnung See (Verordnung über die Beförderung gefährlicher Güter mit Seeschiffen, Deutschland) **GGVSee** GHS Globally Harmonized System of Classification and Labelling of Chemicals (= Global Harmonisiertes System zur Einstufung und Kennzeichnung von Chemikalien)

Gefahrstoff-Informationssystem der BG Bau - Berufsgenossenschaft der Bauwirtschaft (Deutschland) **GISBAU**

GisChem Gefahrstoffinformationssystem Chemikalien der BG RCI - Berufsgenossenschaft Rohstoffe und chemische Industrie und der BGHM - Berufsgenossenschaft Holz und Metall (Deutschland)

GWP Global warming potential (= Treibhauspotenzial)

IARC International Agency for Research on Cancer (= Internationale Agentur für Krebsforschung)

IATA International Air Transport Association (= Internationale Flug-Transport-Vereinigung)

IBC (Code) International Bulk Chemical (Code)

IMDG-Code International Maritime Code for Dangerous Goods (= Gefährliche Güter im internationalen Seeschiffsverkehr)

inkl. inklusive. einschließlich

IUCLIDInternational Uniform Chemical Information Database

IUPAC International Union for Pure Applied Chemistry (= Internationale Union für reine und angewandte Chemie)

k.D.v. keine Daten vorhanden KFZ, Kfz Kraftfahrzeug

Koc Adsorptionskoeffizient des organischen Kohlenstoffs im Boden

Konz. Konzentration

Octanol/Wasser-Verteilungskoeffizient Kow

LC50 Lethal Concentration to 50 % of a test population (= Für 50 % einer Prüfpopulation tödliche Konzentration)

LD50 Lethal Dose to 50% of a test population (Median Lethal Dose) (= Für 50 % einer Prüfpopulation tödliche Dosis (mediane letale Dosis))

LGK Lagerklasse

LOEC, LOEL Lowest Observed Effect Concentration/Level (niedrigste Konzentration/Dosis mit beobachteter Wirkung)

Log Koc Logarithmus des Adsorptionskoeffizienten des organischen Kohlenstoffs im Boden

Logarithmus des Octanol/Wasser-Verteilungskoeffizienten Log Kow, Log Pow

Limited Quantities (= begrenzte Mengen) LO Luftreinhalte-Verordnung (Schweiz) LRV

LVA Listen über den Verkehr mit Abfällen (Schweiz)

MARPOL Internationale Übereinkommen zur Verhütung der Meeresverschmutzung durch Schiffe

Min., min. Minute(n) oder mindestens oder Minimum

nicht anwendbar n.a. nicht geprüft n.g. nicht verfügbar n.v.

NIOSH National Institute for Occupational Safety and Health (= Nationales Institut für Arbeitssicherheit und Gesundheit (USA))

No-longer-Polymer (= Nicht-mehr-Polymer)

NOEC, NOEL No Observed Effect Concentration/Level (= Konzentration/Dosis ohne beobachtete Wirkung)

OECD Organisation for Economic Co-operation and Development (= Organisation für wirtschaftliche Zusammenarbeit und Entwicklung)

organisch org.

OSHA Occupational Safety and Health Administration (= Arbeitssicherheit-und Gesundheitsbehörde (USA))

PBT persistent, bioaccumulative and toxic (= persistent, bioakkumulierbar und toxisch)

PF Polyethylen

PNEC Predicted No Effect Concentration (= abgeschätzte Nicht-Effekt-Konzentration)

Pt. Punkt

PVC Polyvinylchlorid

Registration, Evaluation, Authorisation and Restriction of Chemicals (VERORDNUNG (EG) Nr. 1907/2006 zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe)

9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS No. or other numerical REACH-IT List-No. identifier. List Numbers do not have any legal significance, rather they are purely technical identifiers for processing a submission via REACH-IT.

resp. respektive

RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (= Regelung zur internationalen Beförderung gefährlicher Güter im Schienenverkehr)

SVHC Substances of Very High Concern (= besonders besorgniserregende Sunstanzen)

Tel. Telefon

-DA (H-

Seite 31 von 31

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006, Anhang II

Überarbeitet am / Version: 27.11.2023 / 0005 Ersetzt Fassung vom / Version: 18.01.2023 / 0004

Tritt in Kraft ab: 27.11.2023 PDF-Druckdatum: 27.11.2023 NIGRIN Caravan Toiletten-Zusatz

TOC Total organic carbon (= Gesamter organischer Kohlenstoff)

TRGS Technische Regeln für Gefahrstoffe

UVEK Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation (Schweiz)

UN RTDG United Nations Recommendations on the Transport of Dangerous Goods (die Empfehlungen der Vereinten

Nationen für die Beförderung gefährlicher Güter)

UV Ultraviolett

VbF Verordnung über brennbare Flüssigkeiten (Österreichische Verodnung)

VeVA Verordnung über den Verkehr mit Abfällen (Schweiz)

VOC Volatile organic compounds (= flüchtige organische Verbindungen)

vPvB very persistent and very bioaccumulative (= sehr persistent und sehr bioakkumulierbar)

WBF Eidgenössisches Department für Wirtschaft, Bildung und Forschung (Schweiz)

WGK Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen - AwSV (Deutsche Verordnung)

WGK1 schwach wassergefährdend WGK2 deutlich wassergefährdend

WGK3 stark wassergefährdend

wwt wet weight (= Feuchtmasse)

z. Zt. zur Zeit z.B. zum Beispiel

Die hier gemachten Angaben sollen das Produkt im Hinblick auf die erforderlichen Sicherheitsvorkehrungen beschreiben, sie dienen nicht dazu bestimmte Eigenschaften zuzusichern und basieren auf dem heutigen Stand unserer Kenntnisse. Haftung ausgeschlossen.

Ausgestellt von:

Chemical Check GmbH, Chemical Check Platz 1-7, D-32839 Steinheim, Tel.: +49 5233 94 17 0, Fax: +49 5233 94 17 90

© by Chemical Check GmbH Gefahrstoffberatung. Veränderung oder Vervielfältigung dieses Dokumentes bedarf der ausdrücklichen Zustimmung der Chemical Check GmbH Gefahrstoffberatung.